Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25376, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356563

RESUMEN

The importance of parameters such as compaction pressure, binder percentage and retention time and their interaction in the production of carbonized briquettes for domestic or industrial use cannot be overestimated, as they have a considerable impact on the properties of the resulting briquettes. This study used Box-Behnken Response Surface Methodology (RSM) and Analysis Of Variance (ANOVA) to show how the above parameters and their interactions significantly influence the Higher Heating Value (HHV), ash content and Impact Resistance Index (IRI) of the biofuels obtained. The briquettes are characterized in accordance with American Society for Testing and Materials ASTM D-(5865 and 3172). IRI is determined by the drop test. The Niton XLT900s X-ray fluorescence spectrometer is used for mineralogical analysis. The peel starch used as a binder is characterized by the Association of Official Agricultural Chemists standard. This starch has a starch purity of 89.8 %, an HHV of 13974 kJ/kg, a protein content of 4.79 % and a sugar content of 1.3 %. The HHV of the biofuels ranged from 23783 to 26050 kJ/kg, their ash content from 2.86 to 5.24 %, and the IRI from 136.36 to 500 %. The significant effect of binder on these results is confirmed (p < 0.05). The Standard deviations of ± 21.425 kJ/kg, ± 0.021 % and ± 2.121 % were obtained between the experimental values and those of the mathematical models developed to predict HHV, ash content and IRI. The optimum parameters for industrial biofuel production correspond to a binder percentage of 10 %, a compaction pressure of 75 kPa and a retention time of 7.49 min. The experimental results under these conditions are: 25596 kJ/kg, 3.01 % and 375 % for HHV, ash content and IRI. In correlation with the absence of certain heavy metals, the study confirms that the briquettes produced are suitable for domestic use.

2.
J Food Sci Technol ; 51(9): 1711-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25190827

RESUMEN

Sorption isotherms of cassava were determined experimentally using a static gravimetric method at 30, 45 and 60 °C and within the range of 0.10-0.90 water activity. At a constant water activity, equilibrium moisture content decreased with increasing temperature. The equilibrium moisture content increased with increasing water activity at a given temperature. The experimental results were modelled using seven sorption models using non-linear regression technique. Results demonstrated that the GAB model adequately predicted equilibrium moisture content of cassava for the range of temperatures and water activities studied. The thermodynamic functions such as net isosteric heat of sorption, differential entropy of sorption, net integral enthalpy and entropy were evaluated to provide an understanding of the properties of water and energy requirements associated with the sorption behaviour. Net isosteric heat and differential entropy decreased with increasing equilibrium moisture content. The net integral enthalpy decreased while net integral entropy increased with increasing equilibrium moisture content. Net integral entropy was negative in value. All thermodynamic functions were adequately characterised by a power law model. The point of maximum stability was found between 0.053 and 0.154 kg water/kg db for cassava.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...